Physician, company CEO, surgeon, philanthropist, and owner of the LA Times, Dr. Patrick Soon-Shiong talks about his progress developing a COVID-19 treatment and his goal to produce a billion doses to tackle the virus worldwide.
Dr. Patrick Soon-Shiong is a physician, surgeon, researcher, philanthropist, and owner of the LA Times. From 1997–2010, he served as Founder, Chairman and CEO of American Pharmaceutical Partners (APP) and Abraxis BioScience, where he developed the drug Abraxane, which received FDA approval for the treatment of metastatic breast cancer, lung cancer, and advanced pancreatic cancer. In 2008, he sold APP to Fresenius for approximately $4.6 billion. Two years later, he sold Abraxis to Celgene for approximately $3.8 billion.
Dr. Soon-Shiong currently serves as Chairman and CEO of NantWorks, an “ecosystem of companies” aiming to create transformative global health information and next-generation pharma development network. Under the NantWorks umbrella, Soon-Shiong is also Chairman and CEO of NantKwest, an immunotherapy company focusing on Natural Killer cells, and ImmunityBio, a company that aims to deploy a broad portfolio of biological molecules as an integrated cancer vaccine platform targeting multiple tumor types without the use of high-dose chemotherapy.
Since the outbreak of COVID-19, Soon-Shiong has been applying his various resources toward understanding and combatting the virus. In May, ImmunityBio’s COVID-19 vaccine candidate was one of 14 companies selected for Operation Warp Speed, a national program to accelerate COVID-19 vaccine development. The candidate is the first human adenovirus (Ad5) vaccine designed to deliver both Spike (S) and Nucleocapsid (N) DNA for potential long-lasting humoral and cell-mediated immunity.
Pharm Exec caught up with Dr. Soon-Shiong to talk about how his companies are progressing in developing a COVID-19 treatment and his goal to produce a billion doses to tackle the virus worldwide.
Dr. Patrick Soon-Shiong
Dr. Patrick Soon-Shiong: My companies Abraxis BioScience and American Pharmaceutical Partners (APP) were working back in 2010 on the hypothesis that we could drive memory T cells for both infectious diseases and for cancer. We had developed Abraxane, which is now owned by Bristol Myers Squibb. Unfortunately, much as I tried to explain the motivation behind my developing Abraxane was to avoid high dose chemotherapy by a paradigm change of using this protein nanoparticle as an immuno-modulating agent rather than a cytotoxic drug, the concept was not understood. By the early 2000s I came to realize that high dose chemotherapy, still the current standard of care, was counter-intuitively the wrong therapy and would do little more than induce metastasis and drive resistance towards an incurable outcome. What my colleagues did not realize is that Abraxane was a protein nanoparticle designed to penetrate the cancer microenvironment and activate the macrophages as well as induce what are known as DAMPS to expose the tumor to our immune system. That stimulated in me as far back as 2008 that what we’re doing with regard to chemotherapy was all wrong, that high-dose chemotherapy was wiping out our immune system. Only by activating the immune system could we ever have a chance to find a cure.
But I couldn’t convince anybody. I basically threw up my arms and said, fine, I’m selling APP to Fresenius, I’m selling Abraxane to Celgene, and we’ll go stealth for a decade and prove this hypothesis.
For the past decade, NantWorks has spent close to $3 billion building 9 or 10 manufacturing plants, full R&D facilities on properties spanning about 40 acres in Colorado, California, and Chicago. We needed to capture within NantWorks all the tools in the armamentarium that could prove this hypothesis. That meant we needed to capture a vaccine vector that could drive the code of whatever cargo or transcript you want to drive into the human being, whether it be a tumor-associated antigen, a new epitope, or a COVID sequence, into the dendritic cell and allow that dendritic cell to pump out this code as long as possible, so that we can activate the T and B cell memory. For this vaccine vector, we selected and modified an adenovirus vector, which we call the second-generation adenovirus and which, by the way, has eluded every company, including Merck, Johnson and Johnson, and AstraZeneca, who with Oxford University in the UK is still developing a first-generation adenovirus. First-generation adenoviruses produce in us adenoviral fibers and in so doing completely limit the capability of the dendritic cell to pump out its code, because these fibers alert the immune system in a healthy person that there is something foreign inside the dendritic cell, and therefore kills that dendritic cell. The breakthrough was to develop an adenovirus that had all the propensities of the first-generation adenovirus, that is, being able to get into the dendritic cell and drive the code, but to remove the capability of that adenovirus to make adenoviral fibers, (or proteins) so that it remains stealth. All of a sudden you have an adenovirus that can actually pump out its code for as long as six months, which is remarkable. To us that was the breakthrough.
The next step was to figure out what happens as you age. As you age, your T cells die, your natural killer cells die or diminish. The molecule that up-regulates growth of these cells is IL-15, so we brought in a mutant of IL-15, which is called N-803 and ran that through clinical trials, specifically in bladder cancer. And that has received a Breakthrough Therapy status from FDA; it met the primary endpoint in bladder cancer. When you add to that a natural killer (NK) cell, which we could grow in an unlimited supply, and modify that NK cell to target the tumor, you now have a triple whammy, what I call the triangle offense. You have a dendritic cell to activate the B cell. You have the memory T cell, and now you have a targeted NK cell. Using that, we were able to get a complete remission, now lasting over six months, in metastatic pancreatic cancer; a complete remission, now lasting over a year, in triple negative breast cancer, that had failed all previous therapy; and complete remission now lasting four years in Merkel cell carcinoma, that had failed all therapy. So, the hypothesis was correct.
When COVID-19 came along, it appeared that everything we were doing in cancer and infectious diseases was readymade, thank God, for COVID. Our manufacturing capacity was ready because we were growing NK cells. So we jumped into action. But one advantage we had over other companies is we made a scary discovery about COVID when we were doing molecular dynamic modeling of the receptor-binding domain (RBD), which is the tip of the spear of the spike, to the ACE2 receptor, which is the receptor in the lung or the body. We discovered that this genius virus has figured out a way to hide its RBD, or the business end of the virus. In partnership with Microsoft, we now have a hundred terabytes of data, using a couple of thousand GPUs, and by analyzing this interaction we discovered that the spike protein when given by itself, unfortunately hides this RBD. Using an unmodified spike in combination with afirst-generation adenovirus vector is a huge limitation to this approach. The second-generation adenovirus, however, is stealth to the dendritic cells; it’s hidden from T-cell attack. You have a much longer time for the appropriate cargo to dispense.
By January 2020, we had undertaken the sequence. By March, we had confirmed that the antibodies recognized our protein construct. By April, we created finished dosage form of both constructs; we submitted our IND and went immediately into scale up. We have a magnificent facility already activated that has a capacity now of 218 million doses by the end of the year. And so, in July we will do first in human studies, and then we're off to the races with everybody else, and we will hopefully be on the path to the billion doses.
Around 2012, NantWorks took over National LambdaRail, which ran the Large Hadron Collider and was behind the 12,000-mile fiber-optic network that links physicians with data from big science projects such as The Human Cancer Atlas. That was the basis of us building our supercomputing network. Now, in collaboration with Microsoft, which has been a fantastic partner, we have one of the largest graphics processing unit (GPU) clouds. We’re leveraging Microsoft’s Azure platform to perform a highly detailed computational analysis of the spike protein structure of the SARS-CoV-2. A digital blueprint of the spike protein obtained via a process called cryo-electron microscopy was published in February by researchers at the University of Texas and the National Institutes of Health. Our teams have applied a technique called molecular dynamics to the blueprint. Molecular dynamics analyzes the physical movements of the virus components at the atomic level over an extended period of time and runs a series of computationally intensive simulations that result in a detailed model of the most likely solution structure of the spike protein.
Microsoft and ImmunityBio’s engineers and scientists deployed a cluster containing over 1,250 NVIDIA V100 Tensor Core high-performance GPUs specifically designed for machine learning and other computationally intensive applications. Similarly, ImmunityBio has deployed its 320 GPU cluster, which has been optimized for molecular modeling of proteins, antibodies, antivirals, and targeted small molecule drugs. This has given us an amazing amount of information about where to attack this virus. We’re looking into neutralizing antibodies and finding the best sites on the virus to attack. I anticipate we'll make some exciting announcements in this area soon.
It is a genius virus. What’s happened is that just one mutation on the RBD has increased the infectivity of this thing by 20 times. That's why it's so effective. What is encouraging, however, is that we have discovered that patients who have recovered eleven years on from the first SARS-Cov outbreak have memory T cells to the nucleocapsid (N) phosphoprotein. This validated our decision to add N into our construct so that we can generate memory T cells, because while spike and RBD will mutate, N can't mutate.
The science of this virus is fascinating. Integrating this computational science with modernized DNA systems and modernized genomic devices, such as the second-generation adenovirus that can actually induce this code in the dendritic cell, gives us a real fighting chance to create memory T cells against SARS-Cov-2.
I hope that our government recognizes that a human adenovirus that is second generation which uniquely includes N in addition to S warrants support, because there's no way that we as a small privately held company could do this alone.
My next challenge then is not fighting the virus but receiving the resources to scale to a billion doses. It is making sure that we stand as tall as the large pharma companies that have been funded by the government to date. The Gates Foundation analyzed our adenovirus vector and kindly offered us grant support, which we will gratefully accept. But this will not go far enough to manage the potential billion-dollar cost to see this all the way through and manufacture billions of doses for the world.
I have no control, and rightly so, of the editorial content of the newspaper. To avoid any conflicts, it’s best that this kind of news is broken by a newspaper like the New York Times or The Wall Street Journal. I'm very aware that I have to be careful as the owner of the LA Times. It’s important that the editorial staff follow the science rather than the specific research I’m involved in.
Soon-Shiong: "My next challenge is not fighting the virus but receiving the resources to scale to a billion doses."
Key Findings of the NIAGARA and HIMALAYA Trials
November 8th 2024In this episode of the Pharmaceutical Executive podcast, Shubh Goel, head of immuno-oncology, gastrointestinal tumors, US oncology business unit, AstraZeneca, discusses the findings of the NIAGARA trial in bladder cancer and the significance of the five-year overall survival data from the HIMALAYA trial, particularly the long-term efficacy of the STRIDE regimen for unresectable liver cancer.
Cell and Gene Therapy Check-in 2024
January 18th 2024Fran Gregory, VP of Emerging Therapies, Cardinal Health discusses her career, how both CAR-T therapies and personalization have been gaining momentum and what kind of progress we expect to see from them, some of the biggest hurdles facing their section of the industry, the importance of patient advocacy and so much more.